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Territory covered by N Levy flights on d-dimensional lattices
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We study the territory covered bl Lévy flights by calculating the mean number of distinct sites,
(Sn(n)), visited aftem time steps on a-dimensionald=2, lattice. The Ley flights are initially at the origin
and each has a probabiliy/ =4+ ) to perform an/-length jump in a randomly chosen direction at each time
step. We obtain asymptotic results for different values cof For d=2 and N—o« we find (Sy(n))
*xC, N2+ ant2ta) \when a<2 and (Sy(n))xN2*dn2e when a>2. Ford=2 andn—o we find
(Sn(n))ecNn for @<2 and(Sy(n))Nn/Inn for &>2. The last limit corresponds to the result obtained by
Larraldeet al. [Phys. Rev. A45, 7128(1992] for bounded jumps. We also present asymptotic results for
(Sn(n)) ond=3 dimensional latticed.51063-651X97)04102-0

PACS numbeps): 05.50:+q

I. INTRODUCTION et al. in [39]. In a recent wor40], a similar approach has
been developed and applied I Lévy flights restricted to
Lévy flights are a model for diffusion, where the displace-the one-dimensional lattice.
ment of a single particle has a distribution, called/y elis- In this paper we study th@veragenumber of distinct sites
tribution, with infinite variance, and sometimes even infinite(Sy(n)), visited byN Lévy flights each having a probability
means. Ley flights have been found useful in describing the A/~ (4% to perform an/-length jump ond-dimensional
enhanced dynamics of nonlinear, chaotic, turbulent, and bidattice. The direction of the jump is chosen randomly. Here
logical systems, in general, systems with enhanced diffusioe assume that E@l) is the base distribution law but extend
compared to Brownian motidrl—8]. For more recent results it for all values ofa. Typical realizations of the distinct sites
on L,'evy flights sed9]. visited for several values af are shown in Fig. 1.
Levy distributions belong to the domain of attraction of  We find that although forr>2 the second moments are
the stable laws with an infinite varian¢&0,11. The prob- finite and the distribution is no longer in the domain of at-

ability of making an/-length jump is asymptotically traction of the infinite variance stable law§y(n)) of Lévy
flights behave qualitatively differently from that of the
p( )/ @) g2 (1)  bounded step walk.
in the Iimi_t {—>oo. This distribution possesses the following Il. ANALYTICAL APPROACH
characteristic property. If we assume thatis the sum of
Lévy random variablesl,. ==_,/;, then it has a distribu- For simplicity the analysis is presented in detail for
tion similar to Eq.(1), d=2, generalizations fod=3 are discussed in Sec. VII.

For different values olx we can approximate the prob-
n ability of a Levy flight to be at lattice site at stepn by two
Pn(L)“L—dTa- (2) different limit distribution laws. Fotr|>n?a>2 and for
Ir|>nY* a<2 the appropriate approximation for the prob-

. . ability to be at a lattice site at stepn is readily shown to be
It is easy to see that mean squdte) is infinite for all n. the stable law

One can also note that power-law behavior of the tails of the

distribution function, Eq.(2), implies the relatively high

probability large values of displacemeht explaining the Pa(r)=n
name “flights.”

The territory covered by a diffusing particle is an impor- For «>2 and |r|<n1’2 the functionp,(r) behaves as the
tant characteristic of its dynamics. This quantity is found toGaussian,
be useful in ecology, chemical reactions, and spreading phe-
nomengd 12-17. In the case of a random walk on the lattice
this amount corresponds to the number of distinct sites vis-
ited by a single random walk&; (n). The properties of this
quantity have been studied in a large number of works for We consider the function(Sy(n)) as the sum
bounded step random walks, \neflights and Ley walks ~ (Sy(n))=(Sy(n)) ™ +(Sy(n))*. The first term in the sum
[18—-38. Its natural generalization, the average number oftorresponds to the distinct sites visited inside the circle
distinct sites visited byN random walkers{Sy(n)), for Ir|<n'"” and the second term corresponds to the sites visited
bounded steps random walks has been studied by Larralde the exterior of this circle: i.e., in the arég>n?, where

72/ap(nfl/ar)ocn|r|7(2+a). (3)

pa(r)en ™ texp(—[r[2/a?n). @
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FIG. 1. Snapshots of the territory covered by
N=1000 Levy flights for different values ofx
(«=1.5,2.0,2.5,3.5) after the same time. The dif-
ferent gray colors correspond to the sequence of
timesn=2,25,100,225,400,500.

a, as2

(Sunm)t= X [1-TND)]. 8

2, a>2. [r|>nY

Thus for each term we can use the corresponging) ap- The technique presented below allows one to get the ap-
proximation, Eqs(3) and (4) proximation for the number of sites visited in the area
' : Uy + . :

We begin by introducing the notation, which is similar to r|>n y_’ 1€ (Sn(m)™. In the limit .N_’.OO _functlon_
that developed by Larraldet al.[39] for bounded jumps and  {Sn(n)) " is bounded by the number of sites inside the circle
used by Berkolaiket al.[40] for Lévy flights in one dimen- [r[<n™. Thus (Sy(n))~ is bounded for flxeih_and the
sion. Let us denote bf,(r) the probability that a site will '€ading term contributing t4Sy(n)) is (Sy(n)) ", i.e.,
be first visited at step by a single Lay flight initially at the - +
origin. We denote by ,(r) the probability that site has not (Sn(n))=~(Sy(n))™, N—eo. 9
been visited by any hey flight by stepn. This function is  other arguments will be employed in the linmit- to get

related to thef,(r) by the final results fox Sy(n)). This limit will be discussed in
Sec. VI
. To study the behavior of the functidn(r) we introduce
Fn(r)=1—k21 fi(r). ®  the following generating functions with respect to the step
number,

The probability that a site has been visited by at least one o o
of the N Lévy flights in the course oh steps is +TN(r). p(r,2)=2, pu(NZ", f(r,z)=>, fa(r)z".
Thus the expected number of distinct sites visited byNhe n=0 n=0

Levy flights by thenth step is(Sy(n)), One can note the relatidi38] betweenf(r,z) andp(r,z),

(Su(m)=3 [1-TND), ©) Hr.2)= gigz (0. (10

where the sum is over all sites of the lattice. According to thén the following we present the formalism to calculate

above definition the functionéSy(n))~ and(Sy(n))* can  P(r.z) andp(0.2) in order to get the singular behavior of
be presented as f(r,z) and therefore the form df,(r).

To calculate the asymptotic form ¢Sy(n))* we con-
siderpy(r) for the|r|>n” regime, at which

(Sv(n)y~= X [1-TNn)], 7

Ir|<nt pn(r)ecn|r| =2+,
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Thus calculation of the generating functige(r,z) near
z=1 yields

p(r,z)=

For p(0,z) one has an asymptotic formulgd7,3§ for
z—1,

dg,do,
p(Oz)oc—f fol azp(0)

Substitution of the Fourier transforrﬁ)(a) of the function

p(r),

11

aF2

. 1-Clgl,
PO [ a=2

~[1-cla?n(e)—cyla?,
into Eq. (11) yields

P(02)x %J‘ fo1T

deq,de,
1—z+aC|g°[In(1/]6])]%2’

12

where 6, is the Kronecker delta. We can see that the be-

havior of p(0,z) is singular fora=2 and regular forx<<2.
We consider the case>2 in the next section.

Ill. THE CASE a>2

By introducing into Eg. (12) the substitution

=(1-2)Y*¢; we obtain

o]

N nl+2/a
exp — CaMTa

where
r= nl/a( N Ca)l/(2+ a)s,

p(n,N) — n(a—Z)/ZaN—1/(2+a).

For N—o the lower limit of the integration can be set to O,

yielding

(SN(n)>+0<n2/"‘N2/(2+“), N—s o0, (14)
For N fixed and n—o the lower integration limit
p(n,N)—o, Thus substitution op(n,N)=0 in the integral
(13) gives an upper bound fqiSy(n))™*, i.e.,

(Sy(n))F<naeN22ta) N fixed. (15
The final asymptotic results fqiSy(n)) will be formulated
in Sec. VI.

dr=

1397

(1- Z)Z/af fw/ (1-2%* d¢pd o,

007 1 Tra”

~m(1-2)) Jo
where the upper limit of integration was extendedetasince

we are interested in the behavior pf0,z) nearz=1. Sub-
stitution of p(r,z) andp(0,z) into Eq. (10) yields

d¢.de,
1+a|p|*’

f(raz)occa|r|2+a(1_z)l+2/a1

whereC,, is the constant. By inverting this generating func-
tion one obtains

r-]2/a
fn(f)“Camﬂ-

A simple calculation gives

2l
I(r)=1— E fi(r)~1— f el
nl+2/a
~1Cofr

nl+2/a

where this approximation is valid, sincg|>nY2=nte
Therefore, approximating the sum in E®) by an integral,
one has

2la 22+ a) _ —2-a
n25(NC,) qun,m[l exals 2 9]ds, (19

IV. THE CASE a<2

In the casea<2 the integral in Eq(12) converges for
z—1, therefore in this limit

p(r,z)
p(0,1)

thus inverting the generating functidifr,z) one gets

f(r,z)=

fa(r)opn(r).

This equation reflects the fact that in this rangeaothe
jumps are so large that a singléwyeflight mostly visits new
sites. Using Eq(5) I',(r) has the approximation

n2
Fn(r)~exr{ —Cw)

and, substituting =n?@T NV (2t a)g
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<SN(I’1)>+0<n4/(2+“)(NCa)2/(2+a)

_ —-2—a
< jﬂ>MmN;1. exp|sl 2 )]ds,

where p(n,N)=N"Y@Tap@-a)ata) |y the [imit N—o
the lower limit of integration can be extended to 0, resulting
in

<SN(n)>+ocn4/(2+a)(NCa)2/(2+a), N—s 0. (16)
In the limit n— oo, the lower limit tends to infinity, therefore
we can expand the exponent as @8pf *)~1—|g 2"«

and integrate as

<SN(n)>+ocn4/(2+a)(NCa)2/(2+a)27Tf S*l*adSNNn,

p(n,N)
17
where, as beforgy(n,N)=N"Y@rap@-a)a2+a)
V. THE CASE a=2
In the case olx=2 one can approximate(0,z) as
0,2)l !
p(0,2)x=In 15/
which leads to
I,.|2
F“””“&‘CMWHB)
and
1/2n
(18)

<SN(n)>+OCW! N— 0.

For the limit n—o one can find the expression for the
(Sn(n))™ in complete analogy to derivation of EQL7). This
yields

N
(U)o s, (19

VI. FINAL RESULTS AND CROSSOVERS
BETWEEN DIFFERENT REGIMES

As shown in Sec. Il, forN—o the leading term in
(Sn(n)) is (Sy(n))™, since it is not bounded in contrast to
the bounded tern{Sy(n)) . Thus the results fofSy(n))
can be approximated BBy (n)) ™ derived in Eqs(14), (16),
and (18) for different values ofw. The results fore<2 are

shown in Fig. 2 to be in good agreement with the Monte

Carlo (MC) simulation results.

For the limitn— o we apply an alternative approach. For
any value ofa the number of visited sites is less tham,
therefore fore<2 one has the estimations

NN=(Sy(n))=(Sy(n)) " =Nn. (20)

Thus(Sy(n))<Nn in the limit n—o.
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FIG. 2. Results obtained from MC simulations for tRedepen-
dence fora=1.0 (empty symbols and «=1.5 (filled symbols.
Results are scaled by multiplyin@y(n)) by n=¥G* ) The fitted
slopes of the lines are 0.67 and 0.56, which are to be compared to
the theoretical values of 2/(2a) =2/3 and 0.57, respectively, see
Eq. (16). The plotted data correspondre- 10 (O),25(< ), and 50
(0).

By equating the two expressions E80) and Eq.(16) for
(Sn(Nn)), @<2, we can obtain the number of stepg and
the number of particledN, for the crossover between the
two different asymptotic regimas—o andN— oo,

N nec N2/(2+ a)n4/(2+ a)

2-a)la
X .

N,oen (21

For N=Ny andn<n, we expect Eq(16) to be valid
while for n>n, we expect{Sy(n))=Nn. In Fig. 3 then
dependence before the crossover tolreregime is shown.
The fitted slope of the plots is close to that predicted by Eq.

<§{n)>

FIG. 3. Then dependence ofSy(n)) with N=10° plotted for
the casesr=1.0(J) anda=1.5(@®). The slopes of the fitted lines
are 1.32 and 1.14, which are to be compared with the prediction of
4/(2+ a)=1.33 and 1.14, respectively, see Egp).
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FIG. 4. Then dependence of the functiofSy(n)) near the
crossover between the regimég2*®n?« and nin(N/Inn), see
Table | for the casen>2. In the casex=2.5 ((J) we see the
behavior before the crossovéBy(n))=n?: the fitted line slope is
0.82~2/a=0.8. The plot for the case=7.0 (O) shows partially
(smalln) the crossover regime and the slope for the large about

1.0. In the plot fore=8.0(A) the crossover regime does not appear

and(Sy(n))=n: the fitted slope is about 0.97.

(16). From Eq.(21) it is also seen that fotr— 2~ the depen-
dence of typd Sy(n))eNn disappears.
For a«>2 one can approximate,(r) in the circle

[r|<n%2 by the Gaussian distribution, therefore the deriva-

tion of Larraldeet al.[39] can be employed, yielding

nin(N/Inn), n<exp yN) (22
(Sn(n))
Nn/Inn, n>exp(yN). (23)
6000.0
5000.0 | * ]

4000.0 | o

3000.0 -

<8,(100)>

2000.0

1000.0 F

10 10°

FIG. 5. TheN dependence of the functidigy(n)) for n=100
is plotted in semilogarithmic scale. In the plot for the case4.0
(@) one can see at large the beginning of the crossover between
the regimes ofiIn(N/Inn) andN?(2*n2= see Table I. The plot for

a=7.0 () shows the behavior before the crossover. For this case

(Sn(n)) is proportional to In), as predicted.
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TABLE I. Summary of the results fofSy(n)), d=2, obtained
in the paper.

a<2 a=2 a>2
N— oo (Nn2)2/(2+a) Nll%/m NZ/(2+a)n2/a
n—o Nn Nr/In[In(n)]  nIin(N/Inn), n<exp(yN)

Nn/Inn, n>exp(yN)

Comparing these results with the result of EfH) one can
see that the leading term in the sum {&(n)) comes from
(Sn(n)) .

In the limit n—o the main regime is that of Eq23),
since Eq.(22) is valid only for boundedh. However, in the
following we show that the regime of ER2) is also impor-
tant.

By comparing Eqs(22) and (23) with Eqg. (14) we can
obtain some estimation for the crossover timegand cross-
over number of particledl,, between those regimes. In par-
ticular, by equating Eq922) and(14) one gets

2/(a+2)
n(a—Z)/a: NX
x IN(Ny /Inny)

and condition n<exp(yN) implies Ny /Inn,>y 1, from
which follows

Ny <[( _ |n,y)—1N§</(a+2)]a/(a—2)_
Thus forN, such that
[(—Iny) INFler2]elle= 2 <exp YN )

the regime of Eq.(22) takes place for the values of:
Ny, <n<exp(yNy).

Indeed, MC simulations support the existence of the re-
gime Eqg.(22). The crossover between the regimes of Egs.
(22) and(23) and the regime of Eq14) is shown in Figs. 4
and 5. In Fig. 4 we present data for thedependence for
N fixed, and in Fig. 5 theN dependence fon fixed. Note
that Fig. 5 is in good agreement with EQ3).

The casew=2 is the boundary case, i.e., the distribution
p(r)e=|r| =2~ belongs neither to the domain of attraction of
the stable laws with infinite variance nor to the domain of the
attraction of Gaussian stable law. Thus fide<n®? the limit
distribution (if one exist$ cannot be described by stable
laws. Nevertheless, we have the lower bound in(#6) and
the natural upper bourldn. MC simulations suggest that the
behavior in the limith—co is proportional toNn/In[In(n)],
which obeys the discussed bounds and coincides with the
results forN=1 [37].

TABLE II. Results predicted fofSy(n)) for d>2.

a=d
Nl/2n[ |n(n)]71/2

[nln(andeZ)]d/Z’ n< NZ/(d*Z)

as<2 2<a<d a>d

(Nn2)d/(d+a) N&/(d+a)dia

N— o
Nn

Nn, n>N2d-2
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VII. SUMMARY AND EXTENSION TO HIGHER
DIMENSIONS
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a<2 the appropriate approximation fgy,(r) is infinite
variance stable laws, while far>2 one should use Gauss-

The results obtained in this paper are summarized 2" @pproximation forr|<n*% Thus the formalism for

Table I.

Using the technique presented in this paper anf4b]
one can extend the analysis to higher dimensiai®s3.
Namely, the integra{12) converges fore<<d and therefore
we consider three regimes<d, a=d, anda>d, which we

a<2 is analogous to the one from Sec. IV and for2
we use results of39]. Summarizing all the above we get
Table 1.
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