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Territory covered by N Lévy flights on d-dimensional lattices

G. Berkolaiko1,2 and S. Havlin2
1Department of Mathematics, Voronezh State University, 394693 Voronezh, Russia
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We study the territory covered byN Lévy flights by calculating the mean number of distinct sites,
^SN(n)&, visited aftern time steps on ad-dimensional,d>2, lattice. The Le´vy flights are initially at the origin
and each has a probabilityAl 2(d1a) to perform anl -length jump in a randomly chosen direction at each time
step. We obtain asymptotic results for different values ofa. For d52 and N→` we find ^SN(n)&
}CaN

2/(21a)n4/(21a), when a,2 and ^SN(n)&}N
2/(21a)n2/a, when a.2. For d52 and n→` we find

^SN(n)&}Nn for a,2 and^SN(n)&}Nn/ lnn for a.2. The last limit corresponds to the result obtained by
Larraldeet al. @Phys. Rev. A45, 7128 ~1992!# for bounded jumps. We also present asymptotic results for
^SN(n)& on d>3 dimensional lattices.@S1063-651X~97!04102-0#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

Lévy flights are a model for diffusion, where the displac
ment of a single particle has a distribution, called Le´vy dis-
tribution, with infinite variance, and sometimes even infin
means. Le´vy flights have been found useful in describing t
enhanced dynamics of nonlinear, chaotic, turbulent, and
logical systems, in general, systems with enhanced diffus
compared to Brownian motion@1–8#. For more recent result
on Lévy flights see@9#.

Lévy distributions belong to the domain of attraction
the stable laws with an infinite variance@10,11#. The prob-
ability of making anl -length jump is asymptotically

p~ l !}l 2~d1a!, a,2 ~1!

in the limit l →`. This distribution possesses the followin
characteristic property. If we assume thatL is the sum of
Lévy random variables,L5( i51

n l i , then it has a distribu-
tion similar to Eq.~1!,

pn~L !}
n

Ld1a . ~2!

It is easy to see that mean square^L2& is infinite for all n.
One can also note that power-law behavior of the tails of
distribution function, Eq.~2!, implies the relatively high
probability large values of displacementL, explaining the
name ‘‘flights.’’

The territory covered by a diffusing particle is an impo
tant characteristic of its dynamics. This quantity is found
be useful in ecology, chemical reactions, and spreading p
nomena@12–17#. In the case of a random walk on the lattic
this amount corresponds to the number of distinct sites
ited by a single random walkerS1(n). The properties of this
quantity have been studied in a large number of works
bounded step random walks, Le´vy flights and Lévy walks
@18–38#. Its natural generalization, the average number
distinct sites visited byN random walkers,̂ SN(n)&, for
bounded steps random walks has been studied by Larr
551063-651X/97/55~2!/1395~6!/$10.00
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et al. in @39#. In a recent work@40#, a similar approach has
been developed and applied toN Lévy flights restricted to
the one-dimensional lattice.

In this paper we study theaveragenumber of distinct sites
^SN(n)&, visited byN Lévy flights each having a probability
Al 2(d1a) to perform anl -length jump ond-dimensional
lattice. The direction of the jump is chosen randomly. He
we assume that Eq.~1! is the base distribution law but exten
it for all values ofa. Typical realizations of the distinct site
visited for several values ofa are shown in Fig. 1.

We find that although fora.2 the second moments ar
finite and the distribution is no longer in the domain of a
traction of the infinite variance stable laws,^SN(n)& of Lévy
flights behave qualitatively differently from that of th
bounded step walk.

II. ANALYTICAL APPROACH

For simplicity the analysis is presented in detail f
d52, generalizations ford>3 are discussed in Sec. VII.

For different values ofa we can approximate the prob
ability of a Lévy flight to be at lattice siter at stepn by two
different limit distribution laws. Forur u@n1/2,a.2 and for
ur u@n1/a,a<2 the appropriate approximation for the pro
ability to be at a lattice siter at stepn is readily shown to be
the stable law

pn~r !5n22/ap~n21/ar !}nur u2~21a!. ~3!

For a.2 and ur u!n1/2 the functionpn(r ) behaves as the
Gaussian,

pn~r !}n
21exp~2ur u2/s2n!. ~4!

We consider the function ^SN(n)& as the sum
^SN(n)&5^SN(n)&

21^SN(n)&
1. The first term in the sum

corresponds to the distinct sites visited inside the cir
ur u<n1/g and the second term corresponds to the sites vis
in the exterior of this circle: i.e., in the areaur u.n1/g, where
1395 © 1997 The American Physical Society
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FIG. 1. Snapshots of the territory covered b
N51000 Lévy flights for different values ofa
(a51.5,2.0,2.5,3.5) after the same time. The d
ferent gray colors correspond to the sequence
timesn52,25,100,225,400,500.
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2, a.2.

Thus for each term we can use the correspondingpn(r ) ap-
proximation, Eqs.~3! and ~4!.

We begin by introducing the notation, which is similar
that developed by Larraldeet al. @39# for bounded jumps and
used by Berkolaikoet al. @40# for Lévy flights in one dimen-
sion. Let us denote byf n(r ) the probability that a siter will
be first visited at stepn by a single Le´vy flight initially at the
origin. We denote byGn(r ) the probability that siter has not
been visited by any Le´vy flight by stepn. This function is
related to thef n(r ) by

Gn~r !512 (
k51

n

f k~r !. ~5!

The probability that a siter has been visited by at least on
of theN Lévy flights in the course ofn steps is 12Gn

N(r ).
Thus the expected number of distinct sites visited by theN
Lévy flights by thenth step is^SN(n)&,

^SN~n!&5(
r

@12Gn
N~r !#, ~6!

where the sum is over all sites of the lattice. According to
above definition the functionŝSN(n)&

2 and ^SN(n)&
1 can

be presented as

^SN~n!&25 (
ur u<n1/g

@12Gn
N~r !#, ~7!
e

^SN~n!&15 (
ur u.n1/g

@12Gn
N~r !#. ~8!

The technique presented below allows one to get the
proximation for the number of sites visited in the are
ur u.n1/g, i.e., ^SN(n)&

1. In the limit N→` function
^SN(n)&

2 is bounded by the number of sites inside the circ
ur u<n1/g. Thus ^SN(n)&

2 is bounded for fixedn and the
leading term contributing tôSN(n)& is ^SN(n)&

1, i.e.,

^SN~n!&'^SN~n!&1, N→`. ~9!

Other arguments will be employed in the limitn→` to get
the final results for̂ SN(n)&. This limit will be discussed in
Sec. VI.

To study the behavior of the functionf n(r ) we introduce
the following generating functions with respect to the st
number,

p~r ,z![ (
n50

`

pn~r !z
n, f ~r ,z![ (

n50

`

f n~r !z
n.

One can note the relation@38# betweenf (r ,z) andp(r ,z),

f ~r ,z!5
p~r ,z!

p~0,z!
, rÞ0. ~10!

In the following we present the formalism to calcula
p(r ,z) and p(0,z) in order to get the singular behavior o
f (r ,z) and therefore the form off n(r ).
To calculate the asymptotic form of^SN(n)&

1 we con-
siderpn(r ) for the ur u.n1/g regime, at which

pn~r !}nur u2~21a!.
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Thus calculation of the generating functionp(r ,z) near
z51 yields

p~r ,z!}
1

~12z!2ur u21a .

For p(0,z) one has an asymptotic formula@37,38# for
z→1,

p~0,z!}
1

p2E E
0

p du1du2

12azp̂~u!
. ~11!

Substitution of the Fourier transformp̂(u) of the function
p(r ),

p̂~u!'H 12Cuuua, aÞ2

12Cuuu2ln~ uuu!2C1uuu2, a52

into Eq. ~11! yields

p~0,z!}
1

p2E E
0

p du1du2
12z1aCuuua@ ln~1/uuu!#da2

, ~12!

whereda2 is the Kronecker delta. We can see that the
havior of p(0,z) is singular fora>2 and regular fora,2.

We consider the casea.2 in the next section.

III. THE CASE a>2

By introducing into Eq. ~12! the substitution
u i5(12z)1/af i we obtain
0,
-

p~0,z!}
~12z!2/a

p2~12z!
E E

0

p/~12z!2/a df1df2

11aufua

'
~12z!2/a

p2~12z!
E E

0

` df1df2

11aufua
,

where the upper limit of integration was extended to`, since
we are interested in the behavior ofp(0,z) nearz51. Sub-
stitution of p(r ,z) andp(0,z) into Eq. ~10! yields

f ~r ,z!}Ca

1

ur u21a~12z!112/a ,

whereCa is the constant. By inverting this generating fun
tion one obtains

f n~r !}Ca

n2/a

ur u21a .

A simple calculation gives

Gn~r !512 (
k50

n

f k~r !;12E
0

n

Ca

t2/a

ur u21a dt

512Ca

n112/a

ur u21a

'expS 2Ca

n112/a

ur u21a D ,
where this approximation is valid, sinceur u.n1/2>n1/a.
Therefore, approximating the sum in Eq.~8! by an integral,
one has
^SN~n!&1}E E
ur u.n1/2

F12expS 2Ca

Nn112/a

ur u21a D Gdr5n2/a~NCa!2/~21a!E E
usu.r~n,N!

@12exp~ usu222a!#ds, ~13!
where

r5n1/a~NCa!1/~21a!s,

r~n,N!5n~a22!/2aN21/~21a!.

ForN→` the lower limit of the integration can be set to
yielding

^SN~n!&1}n2/aN2/~21a!, N→`. ~14!

For N fixed and n→` the lower integration limit
r(n,N)→`. Thus substitution ofr(n,N)50 in the integral
~13! gives an upper bound for̂SN(n)&

1, i.e.,

^SN~n!&1,n2/aN2/~21a!, N fixed. ~15!

The final asymptotic results for̂SN(n)& will be formulated
in Sec. VI.
IV. THE CASE a<2

In the casea,2 the integral in Eq.~12! converges for
z→1, therefore in this limit

f ~r ,z!}
p~r ,z!

p~0,1!
,

thus inverting the generating functionf (r ,z) one gets

f n~r !}pn~r !.

This equation reflects the fact that in this range ofa the
jumps are so large that a single Le´vy flight mostly visits new
sites. Using Eq.~5! Gn(r ) has the approximation

Gn~r !'expS 2C
n2

ur u21aD
and, substitutingr5n2/(21a)N1/(21a)s,
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^SN~n!&1}n4/~21a!~NCa!2/~21a!

3E E
usu.r~n,N!

@12exp~ usu222a!#ds,

wherer(n,N)5N21/(21a)n(22a)/a(21a). In the limit N→`
the lower limit of integration can be extended to 0, resulti
in

^SN~n!&1}n4/~21a!~NCa!2/~21a!, N→`. ~16!

In the limit n→`, the lower limit tends to infinity, therefore
we can expand the exponent as exp(usu222a)'12usu222a

and integrate as

^SN~n!&1}n4/~21a!~NCa!2/~21a!2pE
r~n,N!

`

s212ads;Nn,

~17!

where, as before,r(n,N)5N21/(21a)n(22a)/a(21a).

V. THE CASE a52

In the case ofa52 one can approximatep(0,z) as

p~0,z!} lnS 1

12zD ,
which leads to

Gn~r !'expS 2C
n2

ur u4ln~n! D
and

^SN~n!&1}
N1/2n

@ ln~n!#1/2
, N→`. ~18!

For the limit n→` one can find the expression for th
^SN(n)&

1 in complete analogy to derivation of Eq.~17!. This
yields

^SN~n!&1}
Nn

ln~n!
, n→`. ~19!

VI. FINAL RESULTS AND CROSSOVERS
BETWEEN DIFFERENT REGIMES

As shown in Sec. II, forN→` the leading term in
^SN(n)& is ^SN(n)&

1, since it is not bounded in contrast t
the bounded term̂SN(n)&

2. Thus the results for̂SN(n)&
can be approximated bŷSN(n)&

1 derived in Eqs.~14!, ~16!,
and ~18! for different values ofa. The results fora,2 are
shown in Fig. 2 to be in good agreement with the Mon
Carlo ~MC! simulation results.

For the limitn→` we apply an alternative approach. F
any value ofa the number of visited sites is less thanNn,
therefore fora,2 one has the estimations

Nn>^SN~n!&>^SN~n!&1}Nn. ~20!

Thus ^SN(n)&}Nn in the limit n→`.
By equating the two expressions Eq.~20! and Eq.~16! for
^SN(n)&, a,2, we can obtain the number of stepsn3 and
the number of particlesN3 for the crossover between the
two different asymptotic regimesn→` andN→`,

Nn}N2/~21a!n4/~21a!,

N3}n3
~22a!/a . ~21!

For N5N3 and n,n3 we expect Eq.~16! to be valid
while for n.n3 we expect^SN(n)&}Nn. In Fig. 3 then
dependence before the crossover to theNn regime is shown.
The fitted slope of the plots is close to that predicted by Eq

FIG. 2. Results obtained from MC simulations for theN depen-
dence fora51.0 ~empty symbols! and a51.5 ~filled symbols!.
Results are scaled by multiplyinĝSN(n)& by n

24/(21a). The fitted
slopes of the lines are 0.67 and 0.56, which are to be compared
the theoretical values of 2/(21a)52/3 and 0.57, respectively, see
Eq. ~16!. The plotted data correspond ton510 (s),25 ~L!, and 50
(h).

FIG. 3. Then dependence of̂SN(n)& with N5106 plotted for
the casesa51.0 ~h! anda51.5 ~d!. The slopes of the fitted lines
are 1.32 and 1.14, which are to be compared with the prediction
4/(21a)51.33 and 1.14, respectively, see Eq.~16!.
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~16!. From Eq.~21! it is also seen that fora→22 the depen-
dence of typêSN(n)&}Nn disappears.

For a.2 one can approximatepn(r ) in the circle
ur u<n1/2 by the Gaussian distribution, therefore the deriva
tion of Larraldeet al. @39# can be employed, yielding

^SN~n!&2}H nln~N/ lnn!, n,exp~gN!

Nn/ lnn, n.exp~gN!.

~22!

~23!

FIG. 4. Then dependence of the function̂SN(n)& near the
crossover between the regimesN2/(21a)n2/a and nln(N/lnn), see
Table I for the casea.2. In the casea52.5 ~h! we see the
behavior before the crossover,^SN(n)&}n

2/a: the fitted line slope is
0.82'2/a50.8. The plot for the casea57.0 ~s! shows partially
~smalln) the crossover regime and the slope for the largen is about
1.0. In the plot fora58.0 ~n! the crossover regime does not appea
and ^SN(n)&}n: the fitted slope is about 0.97.

FIG. 5. TheN dependence of the function̂SN(n)& for n5100
is plotted in semilogarithmic scale. In the plot for the casea54.0
~d! one can see at largeN the beginning of the crossover between
the regimes ofnln(N/lnn) andN2/(21a)n2/a, see Table I. The plot for
a57.0 ~h! shows the behavior before the crossover. For this ca
^SN(n)& is proportional to ln(N), as predicted.
-

Comparing these results with the result of Eq.~15! one can
see that the leading term in the sum for^SN(n)& comes from
^SN(n)&

2.
In the limit n→` the main regime is that of Eq.~23!,

since Eq.~22! is valid only for boundedn. However, in the
following we show that the regime of Eq.~22! is also impor-
tant.

By comparing Eqs.~22! and ~23! with Eq. ~14! we can
obtain some estimation for the crossover timen3 and cross-
over number of particlesN3 between those regimes. In pa
ticular, by equating Eqs.~22! and ~14! one gets

n3
~a22!/a5

N3
2/~a12!

ln~N3 / lnn3!

and condition n,exp(gN) implies N3 / lnn3.g21, from
which follows

n3,@~2 lng!21N3
2/~a12!#a/~a22!.

Thus forN3 such that

@~2 lng!21N3
2/~a12!#a/~a22!,exp~gN3!

the regime of Eq.~22! takes place for the values ofn:
n3,n,exp(gN3).

Indeed, MC simulations support the existence of the
gime Eq.~22!. The crossover between the regimes of E
~22! and~23! and the regime of Eq.~14! is shown in Figs. 4
and 5. In Fig. 4 we present data for then dependence for
N fixed, and in Fig. 5 theN dependence forn fixed. Note
that Fig. 5 is in good agreement with Eq.~23!.

The casea52 is the boundary case, i.e., the distributio
p(r )}ur u222a belongs neither to the domain of attraction
the stable laws with infinite variance nor to the domain of t
attraction of Gaussian stable law. Thus forur u<n1/2 the limit
distribution ~if one exists! cannot be described by stab
laws. Nevertheless, we have the lower bound in Eq.~19! and
the natural upper boundNn. MC simulations suggest that th
behavior in the limitn→` is proportional toNn/ ln@ln(n)#,
which obeys the discussed bounds and coincides with
results forN51 @37#.

r

e

TABLE I. Summary of the results for̂SN(n)&, d52, obtained
in the paper.

a,2 a52 a.2

N→` (Nn2)2/(21a) N1/2n/Aln(n) N2/(21a)n2/a

n→` Nn Nn/ ln@ln(n)# nln(N/lnn), n,exp(gN)
Nn/ lnn, n.exp(gN)

TABLE II. Results predicted for̂SN(n)& for d.2.

a<2 2,a,d a5d a.d

N→` (Nn2)d/(d1a) N1/2n@ ln(n)#21/2 Nd/(d1a)nd/a

n→` Nn @nln(Nn12d/2)#d/2, n,N2/(d22)

Nn, n.N2/(d22)
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VII. SUMMARY AND EXTENSION TO HIGHER
DIMENSIONS

The results obtained in this paper are summarized
Table I.

Using the technique presented in this paper and in@40#
one can extend the analysis to higher dimensions,d>3.
Namely, the integral~12! converges fora,d and therefore
we consider three regimes:a,d, a5d, anda.d, which we
treat in complete analogy to the analysis of Sec. III, IV, a
V correspondingly. This gives us the results for theN→`
limit.

The other limit, n→`, has two different regimes: fo
r-

s

y

r-
in

d

a,2 the appropriate approximation forpn(r ) is infinite
variance stable laws, while fora.2 one should use Gauss
ian approximation forur u,n1/2. Thus the formalism for
a,2 is analogous to the one from Sec. IV and fora.2
we use results of@39#. Summarizing all the above we ge
Table II.

ACKNOWLEDGMENTS

We wish to thank H. Larralde, G. H. Weiss, and
Rabinovich for helpful discussions. Our research was p
tially supported by the Israeli Science Foundation~ISF!,
Jerusalem, Israel.
s.

at-
I,

-
d

lk

.

s.
@1# A. Blumen, G. Zumofen, and J. Klafter, Phys. Rev. A40, 3964
~1989!.

@2# J. Klafter, G. Zumofen, and A. Blumen, Chem. Phys.177, 821
~1993!.

@3# G. Zumofen and J. Klafter, Chem. Phys. Lett.219, 303~1994!.
@4# M. F. Shlesinger, G. Zaslavsky, and J. Klafter, Nature~Lon-

don! 263, 31 ~1993!.
@5# J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Today49

~2!, 33 ~1996!.
@6# G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Mu

phy, P. A. Prince, and H. E. Stanley, Nature~London! 381,
413 ~1996!.

@7# M. F. Shlesinger, inOn Growth and Form, edited by H. E.
Stanley and N. Ostrovsky~Nijhoff, Dordrecht, 1986!, p. 283.

@8# B. J. Cole, Anim. Behav.50, 1317~1995!.
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